skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Behar, Ehud"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present results from a high-cadence multiwavelength observational campaign of the enigmatic changing-look active galactic nucleus 1ES 1927+654 from 2022 May to 2024 April, coincident with an unprecedented radio flare (an increase in flux by a factor of ∼60 over a few months) and the emergence of a spatially resolved jet at 0.1–0.3 pc scales. Companion work has also detected a recurrent quasi-periodic oscillation (QPO) in the 2–10 keV band with an increasing frequency (1–2 mHz) over the same period. During this time, the soft X-rays (0.3–2 keV) monotonically increased by a factor of ∼8, while the UV emission remained nearly steady with <30% variation and the 2–10 keV flux showed variation by a factor ≲2. The weak variation of the 2–10 keV X-ray emission and the stability of the UV emission suggest that the magnetic energy density and accretion rate are relatively unchanged and that the jet could be launched owing to a reconfiguration of the magnetic field (toroidal to poloidal) close to the black hole. Advecting poloidal flux onto the event horizon would trigger the Blandford–Znajek mechanism, leading to the onset of the jet. The concurrent softening of the coronal slope (from Γ = 2.70 ± 0.04 to Γ = 3.27 ± 0.04), the appearance of a QPO, and the low coronal temperature ( k T e = 8 3 + 8 keV ) during the radio outburst suggest that the poloidal field reconfiguration can significantly impact coronal properties and thus influence jet dynamics. These extraordinary findings in real time are crucial for coronal and jet plasma studies, particularly as our results are independent of coronal geometry. 
    more » « less
    Free, publicly-accessible full text available March 10, 2026
  2. Abstract We present multifrequency (5–345 GHz) and multiresolution radio observations of 1ES 1927+654, widely considered one of the most unusual and extreme changing-look active galactic nuclei (CL-AGNs). The source was first designated a CL-AGN after an optical outburst in late 2017 and has since displayed considerable changes in X-ray emission, including the destruction and rebuilding of the X-ray corona in 2019–2020. Radio observations prior to 2023 show a faint and compact radio source typical of a radio-quiet AGN. Starting in 2023 February, 1ES 1927+654 began exhibiting a radio flare with a steep exponential rise, reaching a peak 60 times previous flux levels, and has maintained this higher level of radio emission for over a year to date. The 5–23 GHz spectrum is broadly similar to gigahertz-peaked radio sources, which are understood to be young radio jets less than ∼1000 yr old. Recent high-resolution Very Long Baseline Array observations at 23.5 GHz now show resolved extensions on either side of the core, with a separation of ∼0.15 pc, consistent with a new and mildly relativistic bipolar outflow. A steady increase in the soft X-ray band (0.3–2 keV) concurrent with the radio may be consistent with jet-driven shocked gas, though further observations are needed to test alternate scenarios. This source joins a growing number of CL-AGNs and tidal disruption events that show late-time radio activity, years after the initial outburst. 
    more » « less
    Free, publicly-accessible full text available January 20, 2026
  3. We present the results of the XMM-Newton and NuSTAR observations taken as part of the ongoing, intensive multiwavelength monitoring program of the Seyfert 1 galaxy Mrk 817 by the AGN Space Telescope and Optical Reverberation Mapping 2 (AGN STORM 2) Project. The campaign revealed an unexpected and transient obscuring outflow, never before seen in this source. Of our four XMM-Newton/NuSTAR epochs, one fortuitously taken during a bright X-ray state has strong narrow absorption lines in the high-resolution grating spectra. From these absorption features, we determine that the obscurer is in fact a multiphase ionized wind with an outflow velocity of ∼5200 km s−1, and for the first time find evidence for a lower ionization component with the same velocity observed in absorption features in the contemporaneous Hubble Space Telescope spectra. This indicates that the UV absorption troughs may be due to dense clumps embedded in diffuse, higher ionization gas responsible for the X-ray absorption lines of the same velocity. We observe variability in the shape of the absorption lines on timescales of hours, placing the variable component at roughly 1000R_g if attributed to transverse motion along the line of sight. This estimate aligns with independent UV measurements of the distance to the obscurer suggesting an accretion disk wind at the inner broad line region. We estimate that it takes roughly 200 days for the outflow to travel from the disk to our line of sight, consistent with the timescale of the outflow's column density variations throughout the campaign. 
    more » « less